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a b s t r a c t 

A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorre- 

lation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, 

this matrix has to be (i) Positive Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigen- 

values have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above 

conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying 

all four conditions: we propose to iteratively solve a sequence of distinct structure-optimization prob- 

lems and show that, upon convergence, we provably obtain a single estimate satisfying (i)-(iv). Numerical 

studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation 

matrix estimation error and Direction-of-Arrival estimation. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

I Direction-of-Arrival (DoA) estimation, coprime arrays offer in- 

reased Degrees-of-Freedom (DoF) and enable the identification of 

ore sources than sensors compared to equal-length uniform lin- 

ar arrays [1–13] . Coprime arrays have been successfully employed 

n applications such as beamforming design [14–16] and space- 

ime processing [17] , to name a few. Other non-uniform arrays 

ith increased DoF and closed-form expressions are the nested 

nd MISC arrays [18,19] . Intelligent processing of the autocorre- 

ations of the physical array’s elements enables the estimation of 

 signal subspace corresponding to a larger (virtual) array known 

s ‘coarray’ which, in general, is non-uniform. Commonly, only 

 segment of the coarray is retained wherein the elements are 

niformly spaced. Alternatively, some works employ interpolation 

ethods to fill the ‘gaps’ of the full coarray. In this work, we con- 

ider only the uniform segment of the coarray for simplicity. Our 

esult is straightforwardly extended to the full coarray after its 

aps are filled by existing interpolation methods (e.g., [20–22] ). 

A coprime array receiver processes the autocorrelations of the 

hysical-array’s elements and estimates the autocorrelation matrix 

f the coarray. By the received-signal model, the nominal autocor- 

elation matrix of the coarray has a specific structure: it is (i) Pos- 

tive Definite (PD), (ii) Hermitian, (iii) Toeplitz, and (iv) its noise- 

ubspace eigenvalues are equal. In practice, the autocorrelations of 

he physical-array’s elements are estimated by processing a col- 
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ection of received-signal snapshots and diverge from the nominal 

nes. Accordingly, existing approaches offer autocorrelation-matrix 

stimates which diverge from the nominal one, while at the same 

ime, violate at least one of the above structure-properties. 

In this work, we propose an optimization framework for com- 

uting an improved coarray autocorrelation-matrix estimate that 

atisfies properties (i)-(iv). In practice, we iteratively solve a se- 

uence of distinct structure-optimization problems, obtaining upon 

onvergence, an improved estimate that satisfies properties (i)-(iv). 

he proposed framework is accompanied by formal convergence 

nalysis. Our studies illustrate that the proposed method outper- 

orms standard counterparts, both in estimation error and DoA es- 

imation. 

. Signal model and problem statement 

We consider coprime integers M < N and design coprime ar- 

ay with L 
def = 2 M + N − 1 elements at locations L 

def = { (i − 1) Mδ} N 
i =1 

 { iNδ} 2 M−1 
i =1 

, where δ = 
λ
2 is the reference inter-element spacing 

nd λ is the wavelength [23] . Narrow-band signals impinge on the 

rray from K < MN + M sources with DoAs �
def = { θ1 , θ2 , . . . , θK } un- 

er carrier frequency f c and propagation speed c. Under far-field 

onditions, the k th source-signal impinges on the array from di- 

ection θk ∈ (−π
2 , 

π
2 ] with respect to the broadside. Sensor element- 

ocations are described by p 
def = sort (L ) , where sort (·) sorts the ele- 

ents of its input argument in ascending order. The array-response 

ector of source k is s (θk ) 
def = [ v (θk ) 

[ p ] 1 , v (θk ) 
[ p ] 2 , . . . , v (θk ) 

[ p ] L ] � , 

here v (θk ) 
def = exp (− ı 2 π f c 

c sin (θk )) and (·) � denotes the transpose 
peration. Accordingly, the receiver collects received-signal snap- 
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1 If the nominal statistics are known, r sel and r avg = E � avg r coincide. The latter does 
not hold if r sel and r avg are estimated by ̂  r sel and ̂  r avg , respectively. 

2 ̂ R am and ̃  R am denote the augmented matrix approach estimates combined with 

averaging and selection sampling, respectively. 
hots of the form 

 q 
def = 

K ∑ 

k =1 

s (θk ) x q,k + n q ∈ C 
L , (1) 

here x q,k ∼CN (0 , d k ) and n q ∼CN (0 L , σ
2 I L ) , model the q th sym-

ol transmitted by the k th signal-source (power-scaled and flat- 

ading-channel processed) and Additive White Gaussian Noise, re- 

pectively. CN ( μ, C ) denotes the complex normal distribution 

ith mean μ and covariance matrix C . For any integer x ≥ 1 , 

 x = [0 , 0 , . . . , 0] � ∈ R 
x . Received-symbols are uncorrelated across

napshots and sources. Noise-variables are uncorrelated from re- 

eived symbols. The receiver’s objective is to identify � from the 

ollected snapshots. Next, we briefly review standard coprime ar- 

ay processing. 

Physical-Array Autocorrelation Matrix: The nominal received- 

ignal autocorrelation matrix of the physical array is given by R y 

ef = E { y q y q } = S diag (d ) S H + σ 2 I L , where (·) H denotes the conjugate-
ranspose (or, Hermitian) operation . S 

def = [ s (θ1 ) , . . . , s (θK )] and

 

def = [ d 1 , . . . , d K ] 
� denote the array-response matrix and source- 

ower vector, respectively. Since �, d , and σ 2 are in practice un- 

nown to the receiver, R y can not be directly computed and is esti- 

ated based on Q received-signal snapshots by ̂  R y 
def = 

1 
Q 

∑ Q 
q =1 

y q y 
H 
q . 

Autocorrelation Sampling: Nominally, the receiver processes 

 y and computes the autocorrelation-vector r 
def = vec (R y ) = 

∑ K 
k =1 

 (θk ) d k + σ 2 i L , where a (θk ) 
def = s (θk ) 

∗
� s (θk ) and i L 

def = vec (I L ) . Op-

rators‘ �’ and vec (·) denote the Kronecker product [24] of matri- 

es and vectorization operation of a matrix, respectively. For j ∈ 

 L 2 ] 
def = { 1 , . . . , L 2 } , it holds [ a (θk )] j = v (θk ) 

n 
, n ∈ A 

def = sort ({ n 1 − n 2 |
 1 , n 2 ∈ L} ) . The element-locations of the uniform segment of the

oarray are described by 

 

def = { n ∈ A | 1 − L ′ ≤ n ≤ L ′ − 1 } , (2) 

here L ′ def = M N + M . For every n ∈ B, the receiver discards dupli-

ates by selecting any single index j n ∈ [ L 2 ] such that [ a (θk )] j n =
 (θk ) 

n 
. That is, the receiver forms selection-sampling matrix 

 sel 
def = 

[
e j 1 −L ′ ,L 2 , . . . , e j L ′ −1 ,L 

2 

]
, (3) 

here for any p ≤ P ∈ N + , e p,P is the pth column of I P , and com-

utes r sel 
def = E � 

sel 
r = 

∑ K 
k =1 a sel (θk ) d k + σ 2 e L ′ , 2 L ′ −1 , where a sel (θk )

ef = E � 
sel 

a (θk ) = [ v (θk ) 1 −L ′ , . . . , v (θk ) L 
′ −1 ] � . In practice, the

utocorrelation-vector r is estimated by ̂ r 
def = vec ( ̂  R y ) and r sel 

s estimated by ̂  r sel 
def = E � 

sel ̂
 r . 

Coarray Autocorrelation Matrix: The receiver applies a rank- 

nhancement approach on r sel (or, ̂ r sel in practice) to form the 

utocorrelation matrix of the coarray. Commonly, the Augmented 

atrix [25] and Spatial Smoothing [23] approaches are employed. 

ccording to the augmented matrix approach, the receiver com- 

utes 

 am 

def = F ( I L ′ � r sel ) ∈ C 
L ′ ×L ′ , (4) 

here F 
def = [ F 1 , F 2 , . . . , F L ′ ] and, for every m ∈ [ L ′ ] , F m 

def = [ 0 L ′ ×(L ′ −m ) ,

 L ′ , 0 L ′ ×(m −1) ] . R am has full-rank, is PD, Hermitian, Toeplitz, and co-

ncides with the autocorrelation matrix of the coarray 

 co = S co diag (d ) S H co + σ 2 I L ′ , (5) 

here [ S co ] m,k 
def = v (θk ) m −1 , for every m ∈ [ L ′ ] and k ∈ [ K] . Accord-

ng to the spatial-smoothing approach [23] , in the case of known 

tatistics, the receiver computes the spatially-smoothed matrix 

 ss 
def = 

1 
L ′ R am R 

H 
am 

which is not an autocorrelation matrix but an au- 

ocorrelation matrix is extracted from it as a scaled version of its 
2 
rincipal square root 

 psr 
def = 

√ 

L ′ R 

1 
2 
ss . (6) 

e notice that R am R 
H 
am 

= R 
2 
am 

= L ′ R ss . Moreover, R ss admits Sin-

ular Value Decomposition (SVD) R ss 
svd = U�V 

H which implies that 

 psr = U ( 
√ 

L ′ � 1 
2 ) V 

H = R am . That is, R psr and R am both coincide

ith R co . Here, we note that in the (ideal) case of known statis- 

ics to the receiver, all estimates above coincide with the nominal 

utocorrelation matrix of the coarray and satisfy (i)-(iv). However, 

n the practical case of unknown statistics (case of interest) to the 

eceiver, the estimates above diverge from R co and satisfy only a 

ubset of (i)-(iv): The augmented matrix approach of [25] proposed 

o substitute the sampling matrix E sel by the averaging sampling 

atrix 

 avg 
def = 

[ 

1 

|J 1 −L ′ | 
∑ 

j∈J 1 −L ′ 

e j,L 2 , . . . , 
1 

|J L ′ −1 | 
∑ 

j∈J L ′ −1 

e j,L 2 

] 

, (7) 

here for every n ∈ B, J n = { j ∈ [ L 2 ] | [ a (θk )] j = v (θk ) 
n } , substi-

uting ̂ r sel by ̂ r avg 
def = E � avg ̂

 r . 1 Accordingly, R co is estimated by 

 
 am 

def = F (I L ′ �̂ r avg ) . Importantly, it holds that ̂  R am is Hermitian and 

oeplitz, however, it’s not guaranteed to be PD. That is, ̂ R am can 

e an indefinite estimate of R co [25] . Similarly, R ss and R psr are es-

imated by ̂ R ss 
def = 

1 
L ′ ̃

 R am ̃
 R 
H 
am 

and ̂ R psr 
def = 

√ 

L ′ ̂  R 

1 
2 
ss , respectively, where 

 
 am = F (I L ′ �̂ r sel ) . 

2 ˜ R am can be an indefinite matrix. In view of 

he above, ̂  R psr is by construction a PD and Hermitian matrix esti- 

ate of the coarray autocorrelation matrix, however, it violates the 

oeplitz structure-property of R co . It follows that ̂ R psr and ˜ R am no 

onger coincide, however, their left-hand singular-valued singular 

ectors span the same signal subspace. For the unknown statistics 

ase, we summarize the above estimates in Table 1 , where for each 

stimate we mention the employed autocorrelation sampling ap- 

roach. Moreover, for each structure property guaranteed to be sat- 

sfied, we place a ‘ 
√ 

’, otherwise, we place a ‘ ✗ ’. Given a coarray au-

ocorrelation matrix estimate ̂ R ∈ { ̂  R am , ̃
 R am , ̂

 R psr } , a standard DoA 

stimation approach–e.g., MUltiple SIgnal Classification (MUSIC)–is 

pplied for identifying the DoAs in �. 

. Proposed autocorrelation-matrix estimate 

We propose an algorithm which iteratively solves a sequence 

f optimization problems returning, upon convegrence, an im- 

roved coarray autocorrelation matrix estimate. Motivated by [26] , 

here it was formally proven that averaging autocorrelation sam- 

ling attains superior autocorrelation estimates compared to se- 

ection sampling with respect to the Mean-Squared-Error (MSE) 

etric, we propose to initialize the proposed algorithm to P 0 = 
 

1 
L ′ ̂

 R am ̂
 R 
H 
am 

. At iteration i ≥ 0 , the proposed algorithm computes 

 i = �(P i ) , (8) 

 i = 	(Q i ) , (9) 

 i +1 = 
(R i ) , (10) 

here for any X = X 
H ∈ C 

D ×D with Eigenvalue Decomposition 

EVD) X 

evd = U diag ( λ ) U 
H the following hold. 
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Table 1 

Comparison of coarray autocorrelation matrix estimates: autocorrelation sampling approach and structure properties. 

Matrix estimate Autocorrelation sampling approach Positive Definite Toeplitz Hermitian Equal noise-subspace eigenvalues ˜ R am Selection ✗ 
√ √ 

✗ ̂ R am Averaging ✗ 
√ √ 

✗ ̂ R psr Averaging 
√ 

✗ 
√ 

✗ 

Structured (proposed) Averaging 
√ √ √ √ 

Fig. 1. Illustration of the i th diagonal of X ∈ C 4 ×4 , d i (X ) , i ∈ { 0 , ±2 } . 
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4 A Hermitian matrix A can be expressed as A = U�U H , where � is an upper diag- 

onal with the eigenvalues of A in its main diagonal. If A is normal (i.e., AA H = A H A ), 

then � is diagonal. Every Hermitian matrix is normal. 
efinition 1. �(X ) returns the nearest Toeplitz matrix, in the 

uclidean norm sense, 3 to X : �(X ) 
def = argmin 

T 0 ∈T D 
‖ X − T 0 ‖ 2 F , where 

 
D def = { T ∈ C 

D ×D | T is Toeplitz } . 
efinition 2. 	(X ) returns the nearest Positive Semidefinite (PSD) 

atrix to X : 	(X ) 
def = argmin 

X 0 ∈ S D + 
‖ X − X 0 ‖ 2 F , where S 

D + 
def = { A ∈ C 

D ×D |
 = A 

H �0 } . 
efinition 3. 
(X ) performs an eigenvalue-correction operation 

o the D − ρ smallest eigenvalues of X . For some general ρ ∈ 

 1 , . . . , D − 1 } , 
(X ) 
def = U diag ( λ

X 
) U 

H , where 

 λ
X 
] i = 

⎧ ⎨ ⎩ 

[ λ
X 
] i , i ≤ D − ρ + 1 , 

1 
D −ρ

D ∑ 

j= ρ+1 

[ λ
X 
] j , i > D − ρ + 1 . 

(11) 

In view of the above, the proposed algorithm seeks to optimize 

he D − ρ smallest eigenvalues of the autocorrelation matrix esti- 

ate at which it is initialized while preserving the PSD, Hermitian, 

nd Toeplitz structure. Next, we conduct formal convergence anal- 

sis of the proposed algorithm. 

Consider arbitrary X = X 
H ∈ C 

D ×D and let d i (X ) denote a diago-

al of X (see Fig. 1 ) such that 

 d i (X )] j = 

{
[ X ] j−i, j , i ≤ 0 , 
[ X ] j, j+ i , i > 0 , 

(12) 

or any j ∈ { 1 , 2 , . . . , D − | i |} . The following remarks hold. 

emark 1. It holds that d i (X ) = d ∗
i ′ (X ) , if | i | = | i ′ | . 

emark 2. Let T 
def = �(X ) = min T 0 ∈T D ‖ X − T 0 ‖ 2 F . For any i ∈ { 1 −

, . . . , D − 1 } , it holds that d i (T ) = 
1 

D −| i | 1 � D −| i | d i (X ) 1 D −| i | where, for

ny integer x ≥ 1 , 1 x = [1 , 1 , . . . , 1] � ∈ R 
x . 

Remark 2 illustrates that the nearest Toeplitz matrix to X can 

e found in closed-form. 

emark 3. Let T 
def = �(X ) . It holds that ‖ T ‖ 2 ≤ ‖ X ‖ 2 . 
F F 

3 Otherwise known as Frobenius norm: ‖ · ‖ 2 F returns the sum of the squared en- 

ries of its argument. 

λ

λ

3 
roof. 

 T ‖ 
2 
F = 

D −1 ∑ 

i =1 −D 

‖ d i (T ) ‖ 
2 
2 = 

D −1 ∑ 

i =1 −D 

‖ 

1 

D − | i | ( 1 
� 
D −| i | d i ( X )) 1 D −| i | ‖ 

2 
2 

= 

D −1 ∑ 

i =1 −D 

(1 � 
D −| i | d i (X )) 2 

(D − | i | ) 2 ‖ 1 D −| i | ‖ 
2 
2 (13) 

= 

D −1 ∑ 

i =1 −D 

(1 � 
D −| i | d i (X )) 2 

D − | i | ≤
D −1 ∑ 

i =1 −D 

‖ 1 D −| i | ‖ 
2 
2 ‖ d i (X ) ‖ 

2 
2 

D − | i | = ‖ X ‖ 
2 
F . (14) 

�

By Remark 3 , T is the nearest Toeplitz matrix to X and exhibits

quared Frobenius norm lower or equal than that of X . 

emark 4. Let T 
def = �(X ) admit EVD 

4 T = U diag ( λT ) U 
H . 5 It holds

hat ‖ T ‖ 2 F = Tr (U diag ( λT ) diag ( λT ) U 
H ) = ‖ λT ‖ 2 2 . 

emark 5. Let T 
def = �(X ) admit EVD T = U diag ( λT ) U 

H and de-

ne P such that P = U diag ( λP ) U 
H , where 6 λP = λ+ 

T –i.e., ∀ i ∈ [ D ] ,

 λP ] i = max { [ λT ] i , 0 } . It holds that P is the solution to min. 
P 0 ∈ S D + 

‖ T −
 0 ‖ 2 F . A proof for Remark 5 was first offered for real matrices in

27] . For completeness purposes, we offer an analogous proof for 

omplex-valued matrices. 

roof. Consider Hermitian T ∈ C 
D ×D with EVD T = U diag ( λT ) U 

H ,

 is unitary (i.e., UU 
H = U 

H U = I D ). Let H = U 
H P 0 U which implies

hat P 0 = UHU 
H . It holds 

min 
 0 ∈ S D + 

‖ T − P 0 ‖ 
2 
F = min 

H ∈ C D ×D 
‖ diag ( λT ) − H ‖ 

2 
F 

= min 
H ∈ C D ×D 

∑ 

i, j 
i  = j 

[ H ] 2 i, j + 

D ∑ 

i =1 

([ λT ] i −[ H ] i,i ) 
2 (15) 

≥
∑ 

i, j 
i  = j 

[ H ] 2 i, j + 

D ∑ 

i =1 

([ λT ] i −[ H ] i,i ) ≥
∑ 

i ∈{ 1 , 2 , ... ,D | [ λT ] i < 0 } 
[ λT ] 

2 
i . (16) 

Similar to [27] , the lower bound in (16) is attained by matrix 

 = diag ( λP ) for λP such that [ λP ] i = max { [ λT ] i , 0 } . �

By Remark 5 , the nearest PSD matrix to T can be found in

losed-form. 

emark 6. For P = 	(T ) , it holds that ‖ P ‖ 2 F ≤ ‖ T ‖ 2 F . Formally,

 P ‖ 2 
F 
= ‖ λP ‖ 2 2 = 

∑ D 
i =1 [ λP ] 

2 
i 

≤ ∑ D 
i =1 [ λT ] 

2 
i 

= ‖ T ‖ 2 
F 
. 

By Remark 6 , P is the nearest PSD matrix to T and attains

quared Frobenius norm lower or equal than that of T . 
5 For any normal matrix W , we denote its eigenvalues by vector λW . For instance, 

T denotes the eigenavalues of T while λP denotes the eigenvalues of P . 
6 λ+ 

T returns a vector with length equal to that of λT with the positive entries of 

T intact and its negative entries set to zero. 
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Fig. 2. Visual illustration of Proposition 1 . (M, N) = (2 , 3) , � = {−43 ◦, −21 ◦, 
−10 ◦, 17 ◦, 29 ◦, 54 ◦} , d k = 0 dB ∀ k, σ 2 = 1 , Q = 50 . 
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7 H-PSD-T seeks a Hermitian-PSD-Toeplitz matrix which fills the gaps of the 

coarray. When the uniform segment of the coarray is considered, H-PSD-T returns 

argmin 
R ∈ S L ′ + 

‖ R − ̂ R am ‖ 2 F + μ‖ R ‖ ∗, where μ‖ R ‖ ∗ is a regularization term that moderates 

overfitting. 
emark 7. Let A = 
(P ) = U diag ( λA ) U 
H , where 

 λA ] i = 

⎧ ⎨ ⎩ 

[ λP ] i , i ≤ D − ρ + 1 , 

1 
D −ρ

D ∑ 

j= ρ+1 

[ λP ] j , i > D − ρ + 1 , 
(17) 

or ρ ∈ { 1 , . . . , D − 1 } . It holds that ‖ A ‖ 2 
F 

≤ ‖ P ‖ 2 
F 
. 

roof. 

 A ‖ 
2 
F = 

D ∑ 

i =1 

[ λA ] 
2 
i = 

D −ρ∑ 

i =1 

[ λP ] 
2 
i + ρ

( 

1 

ρ

D ∑ 

j= D −ρ+1 

[ λP ] j 

) 2 

≤
D −ρ∑ 

i =1 

[ λP ] 
2 
i + 

D ∑ 

j= D −ρ+1 

[ λP ] 
2 
j = ‖ P ‖ 

2 
F . (18) 

�

By Remark 7 , the eigenvalue correction operation on a normal 

atrix returns a matrix with squared-Frobenius norm lower or 

qual than that of its input argument. In view of Remarks 1 –7 , the

ollowing Proposition derives. 

roposition 1. For Q i , R i , and P i +1 in (8) - (10) , it holds that

 Q i ‖ 2 F ≥‖ R i ‖ 2 F ≥‖ P i +1 ‖ 2 F ≥‖ Q i +1 ‖ 2 F ≥ . . . ≥ 0 ∀ i ≥0 . 

Proposition 1 states that the proposed algorithm is guaranteed 

o converge. In practice, one can terminate the iterations when 

 P i +1 − P i ‖ ≤ ε, for some ε ≥ 0 . For sufficiently small ε, Proposi-

ion 1 implies that, at convergence, P i +1 = R i = Q i which, in turn, 

mplies that the algorithm converged to a PD, Hermitian, and 

oeplitz matrix the noise-subspace eigenvalues of which are equal. 

 visual illustration of Proposition 1 and a pseudocode of the 

roposed algorithm are offered in Fig. 2 and Fig. 3 , respectively. 

mportantly, ∀ i ≥ 0 , the Algorithm of Fig. 3 computes Q i , R i , P i +1 

y closed-form expressions with cost at most the cost of EVD–

.e., O(D 
3 ) . Overall, the cost of the proposed algorithm is O(T D 

3 )

here T is the number of iterations required for convergence. 

. Numerical studies 

We consider coprime naturals (M, N) = (3 , 5) and form coprime 

rray with L = 10 elements. Source-signals impinge on the ar- 

ay from K = 13 DoAs { θk } 13 k =1 
, θk = (−75 + (k − 1)12) ◦. The noise

ariance is set to σ 2 = 0 dB. All sources emit signals with equal 

ower d k = α2 dB. Accordingly, the Signal-to-Noise Ratio SNR = α2 . 

he receiver collects Q ∈ { 150 , 300 , 450 , 600 } received-signal snap-
hots. For every Q, we consider � = 30 0 0 statistically indepen- 

ent realizations of noise; i.e., { y r, 1 , . . . , y r,Q } �r=1 
. At every realiza-

ion r, we compute coarray autocorrelation matrix estimates corre- 

ponding to the augmented matrix approach (AM), principal square 

oot of the spatial smoothed matrix (PSR), nearest Hermitian, PSD, 
4 
nd Toeplitz (H-PSD-T) approach of [22] 7 , and the proposed struc- 

ured estimate. We take a moment and discuss similarities and 

ifferences between H-PSD-T and the proposed framework: (1) H- 

SD-T is guaranteed to satisfy the Toeplitz, Hermitian, and Pos- 

tive Semidefinite structure properties while the proposed esti- 

ate is guaranteed to satisfy all four, (2) H-PSD-T requires tun- 

ng of an ad-hoc parameter that moderates overfitting while the 

roposed framework is ad-hoc parameter free, and (3) H-PSD-T 

omputes an estimate by iterative solvers for convex optimization 

roblems while the proposed approach enjoys closed-form solu- 

ions for each individual optimization problem in its sequence. For 

very method and estimate ̂ R r at realization r, we compute the 

ormalized Squared Error 

SE ( ̂  R r ) = ‖ ̂
 R r − R co ‖ 

2 
F ‖ R co ‖ 

−2 
F . (19) 

hen, we compute the Root Mean Normalized Squared Error 

MNSE = 

√ 

1 

�

�∑ 

r=1 

NSE ( ̂  R r ) . (20) 

n Fig. 4 (a) and Fig. 4 (d), we plot the RMNSE versus sample sup-

ort, Q, for SNR = −4 dB and SNR = 2 dB, respectively. Expectedly, 

e observe that all methods employing averaging-sampling per- 

orm similarly well. The proposed estimate attains superior estima- 

ion performance across the board. Moreover, we notice the sen- 

itivity of H-PSD-T with respect to the ad-hoc parameter μ; e.g., 

or SNR = −4 dB, H-PSD-T with μ = 1 . 5 exhibits low performance 

hile for SNR = 2 dB it exhibits high estimation performance. 

Thereafter, we consider that the nominal coarray autocorrela- 

ion matrix admits SVD R co = Q co �co V 
H 
co + σ 2 ̄Q co ̄Q 

H 
co , where Q co 

nd Q̄ co correspond to the signal and noise subspace bases, respec- 

ively. Similarly, every coarray autocorrelation matrix estimate ̂ R r 

dmits SVD 
̂ R r = Q r �r V 

H 
r + Q̄ r ̄�r ̄V 

H 
r , where Q r denotes the signal- 

ubspace-basis of the K dominant left-hand singular valued singu- 

ar vectors of ̂ R r . At each realization and for every value of Q, we 

ompute the Normalized Squared Subspace Error 

SSE ( ̂  Q r ) = ‖ ̂
 Q r ̂

 Q 
H 
r − Q co Q 

H 
co ‖ 

2 
F (2 K) −1 . (21) 

Then, we compute the Root Mean Normalized Squared Sub- 

pace Error 

MN-SSE = 

√ 

1 

�

�∑ 

r=1 

NSSE ( ̂  Q r ) . (22) 

In Fig. 4 (b) and Fig. 4 (e), we plot the RMN-SSE versus sample

upport for SNR = −4 dB and 2dB, respectively. We notice the influ- 

nce of the ad-hoc parameter μ with respect to H-PSD-T and ob- 

erve that the proposed structured estimate clearly outperforms all 

ounterparts across the board in subspace estimation performance. 

Next, for every value of sample support and realization r, we 

onduct DoA estimation by applying MUSIC on the estimate ̂ R r 

hich returns estimates { ̂  θk,r } K k =1 
[26] . Then, we measure the Root 

ean Squared Error 

MSE = 

√ 

1 

�

1 

K 

�∑ 

r=1 

K ∑ 

k =1 

(θk − ̂ θk,r ) 2 (23) 

nd illustrate the corresponding RMSE curves versus sample sup- 

ort Q, in Fig. 4 (c) and Fig. 4 (f), for SNR = −4 dB and 2dB, re-

pectively. We include the Cramér Rao Lower Bound (CRLB) curves 

s benchmarks [28] . We notice that the performances of standard 
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Fig. 3. Proposed structured coarray autocorrelation matrix estimation. 

Fig. 4. Root Mean Normalized Squared Error (RMNSE) with respect to (w.r.t.) R co , Root Mean Normalized - Subspace Squared Error (RMN-SSE) w.r.t. Q co , and Root Mean 

Squared Error (RMSE) w.r.t. � versus sample support for varying SNR ∈ {−4 , 2 } dB. 

c

t

f  

a

5

s

a

t

a

i

e

t

D

c

i

C

w

d

t

o

F

A

F

u

s

R

 

 

 

 

ounterparts (AM, PSR) deviate significantly from the CRLB. In con- 

rast, the proposed coarray autocorrelation matrix estimate outper- 

orms all counterparts by at least 0 . 3 ◦ and at most 2 ◦. In addition,
s Q increases, its performance curves approach the CRLB curves. 

. Conclusions 

We proposed an optimization framework which computes a 

tructured coarray autocorrelation matrix estimate. The proposed 

lgorithm is accompanied by convergence analysis and is guaran- 

eed to return a coarray autocorrelation matrix estimate satisfying 

ll structure properties of the true autocorrelation matrix. Numer- 

cal studies illustrate the enhanced performance of the proposed 

stimate compared to standard counterparts, both in autocorrela- 

ion matrix estimation error and DoA estimation. 
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